Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Res ; 1828: 148764, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38242524

RESUMO

Mesenchymal stem cells therapy provides a new perspective of therapeutic approaches in the treatment of neurodegenerative diseases. The present study aimed to investigate the effects of intranasally transplanted human "olfactory ecto-mesenchymal stem cells" (OE-MSCs) in Alzheimer's disease (AD) rats. In this study, we isolated OE-MSCs from human olfactory lamina propria and phenotypically characterized them using immunocytochemistry and flow cytometry. The undifferentiated OE-MSCs were transplanted either by intranasal (IN) or intrahippocampal (IH) injection to rat models of AD, which were induced by injecting amyloid-beta (Aß) intrahippocampally. Behavioral, histological, and molecular assessments were performed after a three-month recovery period. Based on the results, intranasal administration of OE-MSCs significantly reduced Aß accumulation and neuronal loss, improved learning and memory impairments, and increased levels of BDNF (brain-derived neurotrophic factor) and NMDAR (N-methyl-D-Aspartate receptors) in the AD rat model. These changes were more significant in animals who received OE-MSCs by intranasal injection. The results of this study suggest that OE-MSCs have the potential to enhance cognitive function in AD, possibly mediated by BDNF and the NMDA receptors.


Assuntos
Doença de Alzheimer , Células-Tronco Mesenquimais , Humanos , Ratos , Animais , Doença de Alzheimer/patologia , Aprendizagem Espacial , Fator Neurotrófico Derivado do Encéfalo , Administração Intranasal , Peptídeos beta-Amiloides , Transtornos da Memória/terapia , Células-Tronco Mesenquimais/fisiologia , Modelos Animais de Doenças
2.
Toxicol Appl Pharmacol ; 481: 116754, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37956929

RESUMO

Glioblastoma multiforme (GBM) is one of the most vascular among solid tumors, and despite the use of multimodal therapies, the survival of these patients is poor. In order to target angiogenesis in GBM as a promising strategy, an antiangiogenic drug is required. This study was designed to evaluate the effects of sunitinib, a multityrosine kinase inhibitor with tumor proliferation and angiogenesis inhibitory properties, on GBM-bearing rats. Given the ineffective drug delivery to the brain due to the presence of the blood-brain barrier (BBB), intra-nasal (IN) drug delivery has recently been considered as a non-invasive method to bypass BBB. Therefore, in the current study, IN was used as an ideal method for the delivery of sunitinib to the brain, and the effects of this method were also compared to the OR administration of the sunitinib. GBM was induced in the brain of male Wistar rats, and they were randomly divided into 4 groups; IN-STB (sunitinib intranasal delivery), IN-sham (placebo intranasal delivery), OR-STB (sunitinib oral delivery) and OR-sham (placebo oral delivery). After the end of the treatment period, an MRI of animals' brains showed a reduction in tumor growth in the treatment groups. Immunohistochemistry revealed that sunitinib inhibits angiogenesis in GBM in both OR and IN delivery methods. Analysis of liver tissue and enzymes showed that IN delivery of sunitinib had less hepatotoxicity than the OR method. Overall, it was found that IN sunitinib delivery could be used as a potential non-hepatotoxic alternative for the treatment of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Humanos , Masculino , Ratos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Ratos Wistar , Sunitinibe/uso terapêutico
3.
Laryngoscope Investig Otolaryngol ; 8(5): 1410-1420, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37899856

RESUMO

Objective: Despite 6%-20% of the adult population suffering from tinnitus, there is no standard treatment for it. Placenta extract has been used for various therapeutic purposes, including hearing loss. Here, we evaluate the effect of a novel neuroprotective protein composition (NPPC) extract on electrophysiological and molecular changes in the medial geniculate body (MGB) of tinnitus-induced rats. Methods: To evaluate the protein analysis by western blot, the rats were divided into three groups: (1) saline group (intraperitoneal injection of 200 mg/kg saline twice a day for 28 consecutive days, (2) chronic Na-Sal group received sodium salicylate as in the first group, and (3) chronic treatment group (received salicylate 200 mg/kg twice daily for 2 weeks, followed by 0.4 mg NPPC daily from day 14 to day 28). Single-unit recordings were performed on a separate group that was treated as in group 4. Gap-prepulse inhibition of the acoustic startle (GPIAS) and pre-pulse inhibition (PPI) was performed to confirm tinnitus in all groups at the baseline, 14th and 28th days. Results: Western blot analysis showed that the expression of γ-Aminobutyric acid Aα1 subunit (GABA Aα1), N-methyl-d-aspartate receptor subtype 2B (NR2B or NMDAR2B), α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors subunit GluR1 (GluR1), and α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors subunit GluR2 (GluR2) decreased after Na-Sal injection, while NPPC upregulated their expression. MGB units in rats with tinnitus showed decreased spontaneous firing rate, burst per minute, and a spike in a burst. After NPPC administration, neural activity patterns showed a significant positive effect of NPPC on tinnitus. Conclusion: NPPC can play an effective role in the treatment of tinnitus in salicylate-induced rats, and MGB is one of the brain areas involved in these processes. Level of Evidence: NA.

4.
Heliyon ; 9(8): e19052, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37636471

RESUMO

The effect of neuroprotective placental protein composition (NPPC) on the suppression of tinnitus and the restoration of the auditory brainstem response (ABR) characteristics was explored in tinnitus-induced rats. The animals were placed into two groups: (1) the study group, rats received sodium salicylate (SS) at the dose of 200 mg/kg twice a day for two weeks, and then 0.4 mg of the NPPC per day, between the 14th and 28th days, (2) the placebo group, rats received saline for two weeks, and then the NPPC alone between the 14th and 28th days. The gap pre-pulse inhibition of the acoustic startle (GPIAS), the pre-pulse inhibition (PPI), and the ABR assessments were performed on animals in both groups three times (baseline, day 14, and 28). The GPIAS value declined after 14 consecutive days of the SS injection, while NPPC treatment augmented the GPIAS score in the study group on the 28th day. The PPI outcomes revealed no significant changes, indicating hearing preservation after the SS and NPPC administrations. Moreover, some changes in ABR characteristics were observed following SS injection, including (1) higher ABR thresholds, (2) lowered waves I and II amplitudes at the frequencies of 6, 12, and 24 kHz and wave III at the 12 kHz, (3) elevated amplitude ratios, and (4) prolongation in brainstem transmission time (BTT). All the mentioned variables returned to their normal values after applying the NPPC. The NPPC use could exert positive therapeutic effects on the tinnitus-induced rats and improve their ABR parameters.

5.
Sci Rep ; 13(1): 11930, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488197

RESUMO

As a common debilitating disorder worldwide, tinnitus requires objective assessment. In the auditory brainstem response (ABR) test, auditory potentials can be evoked by acoustic or optoacoustic (induced by laser light) stimulations. In order to use the ABR test in the objective assessment of tinnitus, in this study, acoustic ABR (aABR) and optoacoustic ABR (oABR) were compared in the control and tinnitus groups to determine the changes caused by sodium salicylate (SS)-induced tinnitus in rat. In both aABR and oABR, wave II was the most prominent waveform, and the amplitude of wave II evoked by oABR was significantly higher than that of aABR. Brainstem transmission time (BTT), which represents the time required for a neural stimulation to progress from the auditory nerve ending to the inferior colliculus, was significantly shorter in oABR. In the tinnitus group, there was a significant increase in the threshold of both ABRs and a significant decrease in the amplitude of wave II only in the oABR. Based on our findings, the ABR test has the potential to be used in the assessment of SS-induced tinnitus, but oABR has the advantages of producing more prominent waveforms and significantly reducing the amplitude of wave II in tinnitus.


Assuntos
Salicilatos , Zumbido , Animais , Ratos , Potenciais Evocados Auditivos do Tronco Encefálico , Salicilato de Sódio , Acústica
6.
Am J Otolaryngol ; 43(5): 103505, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35714500

RESUMO

OBJECTIVES: The current study aimed to investigate if there is a difference in the use of intratympanic steroid therapy (IST), compared to systemic steroid treatment (SST), as an initial treatment for patients with sudden sensorineural hearing loss (SSNHL) by a meta-analysis design performed on the mean pure-tone average (PTA) improvement and the complete recovery rate. METHODS: A systematic literature review was performed on randomized controlled trials published from 1990 to August 2020 in some databases including PubMed/MEDLINE, Scopus, Embase, Web of Science, Cochrane library/CENTRAL, Ovid, ProQuest, Google Scholar, and clinical trials.gov. The primary outcomes of interest were pure-tone average improvement and complete recovery rates. RESULTS: Six eligible studies with 496 patients (250 patients in the IST group and 246 subjects in the SST group) were included in this study. The pooled standardized mean difference of the PTAs was estimated as 0.07 (95% CI = -0.10 to 0.25; I2 = 0.0%, P = 0.668), and the pooled odds ratio of complete recovery rate was obtained as 1.00 (95% CI = 0.66 to 0.151; I2 = 31.6, P = 0.199). Moreover, the pooled standardized mean difference of pure-tone average for the intratympanic steroid treatment group compared to the patients with oral steroid treatment was 0.07 (95% CI = -0.12 to 0.26; I2 = 0.0%, P = 0.526). CONCLUSIONS: The current study demonstrated that the effect of intratympanic injection of corticosteroid, as a first-line treatment, is not statistically different from the systemic route in improving the hearing outcomes among patients with SSNHL.


Assuntos
Perda Auditiva Neurossensorial , Perda Auditiva Súbita , Corticosteroides/uso terapêutico , Audiometria de Tons Puros , Dexametasona , Glucocorticoides , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/tratamento farmacológico , Perda Auditiva Súbita/diagnóstico , Perda Auditiva Súbita/tratamento farmacológico , Humanos , Injeção Intratimpânica , Esteroides/uso terapêutico , Resultado do Tratamento
7.
Basic Clin Neurosci ; 13(1): 57-70, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589026

RESUMO

Introduction: Cell therapy is the most advanced treatment of peripheral nerve injury. This study aimed to determine the effects of transplantation of hair follicle stem cells on the regeneration of the sciatic nerve injury in rats. Methods: The bulge region of the rat whisker were isolated and cultured. Morphological and biological features of the cultured bulge cells were observed by light microscopy and immunocytochemistry methods. Percentages of CD34, K15, and nestin cell markers expression were demonstrated by flow cytometry. Rats were randomly divided into 3 groups of injury, epineurium, and epineurium with cells in which rat Hair Follicular Stem Cells (rHFSCs) were injected into the site of the nerve cut. HFSCs were labeled with Bromodeoxyuridine (BrdU), and double-labeling immunofluorescence was performed to study the survival and differentiation of the grafted cells. After 8 weeks, electrophysiological, histological, and immunocytochemical analysis assessments were performed. Results: Rat hair follicle stem cells are suitable for cell culture, proliferation, and differentiation. The results suggest that transplantation of rat hair follicle stem cells can regenerate sciatic nerve injury; moreover, electrophysiology and histology examinations show that sciatic nerve repair was more effective in the epineurium with cell group than in the other experimental group (P<0.05). Conclusion: The achieved results propose that hair follicle stem cells improve axonal growth and functional recovery after peripheral nerve injury. Highlights: This study showed that rat hair follicle stem cells are suitable for cell culture, proliferation and differentiationThe results suggested that transplantation of rat hair follicle stem cells had the potential capability of regenerating sciatic nerve injuryEvidence of electrophysiology and histology showed Concomitant use of epineurium with hair follicle stem cell was more effective repairment. Plain Language Summary: Although repairing damaged peripheral nerves has always been a medical challenge, but peripheral nerve injury has been successfully repaired using various procedures such as nerve auto-graft or stem cell therapy. The functional reconstruction is the most important after therapy because of that primary nerve repair or use of nerve autograft, are still accepted as golden standard methods for treatment. Considerable recent interest has been focused on adult stem cells for both research and clinical applications. A highly promising source of relatively abundant and accessible, active, multipotent adult stem cells are obtained from hair follicles. In research the hair follicle stem cells implanted into the gap region of a severed sciatic nerve injury greatly enhanced the rate of nerve regeneration and the restoration of nerve function. Time is one of the several aspects require specific attention in the clinical treatment of peripheral nerve injury. Because delay of nerve injury treatment may cause neurobiological alterations in neurons and Schwann cells, impairing nerve functional recovery and affect neuron survival. In this study, concluded that stem cell injection 2 weeks after injury in the damaged nerve epineurium repairs nerve fibers, while electrophysiology of the leg muscles showed that muscle function was significantly improved. It indicates the repair of muscular innervation and nerve repair. The results pave the way for further research on this topic.

8.
Life Sci ; 282: 119823, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34273375

RESUMO

AIMS: Zinc oxide nanoparticles (ZnO-NPs) are currently applied in food and pharmaceutical industries whose neurotoxic effect on the central nervous system (CNS) is a major concern. Considering the pharmacological properties (antioxidant, anti-inflammatory) of the geraniol (GE), we aimed to investigate the efficacy of geraniol on ZnO-NPs neurotoxicity. MATERIALS AND METHODS: We used 32 male Wistar rats, randomly assigned to four groups (n = 8): Control, GE (daily received 100 mg/kg of GE by gavage), ZnO-NPs (received intraperitoneal injection of 75 mg/kg of ZnO-NPs twice a week), and ZnO-NPs + GE (received both GE and ZnO-NPs at same doses above during 4 weeks). Morris water maze (MWM) and Y-maze tasks were done to evaluate learning and memory function. Biochemical assays were done to measure total antioxidant capacity (TAC), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPX) and ZnO-NPs bioaccumulation. Nissl and H&E staining were performed for histological evaluations. KEY FINDINGS: The results of behavioral study revealed that GE improved learning and memory impairment induced by ZnO-NPs. Moreover, neuroprotective effect of GE significantly decreased pathological parameters such as necrosis and gliosis, and consequently increased the number of nerve cells in the cortex and different hippocampal areas. Furthermore, biochemical studies demonstrated that GE significantly increased antioxidant indices (namely, TAC, SOD, and GPX) and reduced oxidative stress marker (MDA) and Zn bioaccumulation in ZnO-NPs treated animals. SIGNIFICANCE: Our results provide experimental evidence to further investigate the precise mechanisms underlying the geraniol as a promising therapeutic approach for improvement of cognitive function and neurotoxicity induce by ZnO-NPs.


Assuntos
Monoterpenos Acíclicos/farmacologia , Antioxidantes/farmacologia , Transtornos da Memória , Síndromes Neurotóxicas , Estresse Oxidativo/efeitos dos fármacos , Óxido de Zinco/toxicidade , Animais , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/fisiopatologia , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/fisiopatologia , Ratos , Ratos Wistar
9.
J Photochem Photobiol B ; 221: 112207, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34119804

RESUMO

Transcranial photobiomodulation (tPBM) is the process of delivering light photons through the skull to benefit from its modifying effect. Brain disorders are important health problems. The aim of this review was to determine the existing evidence of effectiveness, useful parameters, and safety of tPBM in the management of traumatic brain injury, stroke, Parkinson, and Alzheimer's disease as the common brain disorders. Four online databases, including Cochrane, Pub Med, Embase, and Google scholar were searched according to the Preferred Reporting Items for Systematic Reviews and meta-analyses (PRISMA) guidelines. 4728 articles were obtained in the initial search. Only those articles that were published until September 2020 and designed as randomized clinical trials (RCTs) or animal-controlled studies were included. 6 RCTs, 2 related supplementary articles, and 38 controlled animal studies met the inclusion criteria of this study. No RCTs were performed in the fields of Alzheimer's and Parkinson's diseases. The human RCTs and animal studies reported no adverse events resulted from the use of tPBM. Useful parameters of tPBM were identified according to the controlled animal studies. Since the investigated RCTs had no homogenous results, making an evidence-based decision for definite therapeutic application of tPBM is still unattainable. Altogether, these data support the need for large confirmatory well-designed RCTs for using tPBM as a novel, safe, and easy-to-administer treatment of brain disorders. EVIDENCE BEFORE THIS STUDY: High prevalence and complications of brain disorders and also side effects of neuropsychiatric medications have encouraged researchers to find alternative therapeutic techniques which tPBM can be one of them. In present review we tried to determine the existing evidence of effectiveness, useful parameters, and safety of tPBM in the management of traumatic brain injury, stroke, Alzheimer, and Parkinson's disease as common brain disorders. Four online databases, including "Cochrane", "Pub Med", "Embase", and "Google scholar" were searched. Only those articles that were published until September 2020 and designed as RCTs or animal-controlled studies were included. Search keywords were the followings: transcranial photobiomodulation" OR "transcranial low-level laser therapy" AND "stroke" OR "traumatic brain injury" OR "Alzheimer" OR "Parkinson". Several studies have confirmed effectiveness of tPBM in treatment of different brain disorders but the level of evidence of its effectiveness remain to be determined. ADDED VALUE OF THIS STUDY: In this study we systematically reviewed human RCTs to determine the existing evidence of tPBM effectiveness in management of four mentioned brain disorders. Since the outcomes of the reviewed RCTs were not homogeneous, further well-designed RCTs are required to decide more definitively on the evidence of this noninvasive and probably safe therapeutic intervention. We hypothesized that non-homogeneous outcomes could be due to inefficiency of PBM parameters. Controlled animal studies have the advantage of using objective tests to evaluate the results and compare them with the control group. We determined useful tPBM parameters based on these studies. IMPLICATIONS OF ALL THE AVAILABLE EVIDENCE: This research is part of our main project of tinnitus treatment using photobiomodulation (PBM). Evidence of central nervous system involvement in tinnitus led us to believe that treatment protocol of tinnitus should also include transcranial PBM. The determined useful parameters can be helpful in designing more efficient tPBM protocols in the management of brain disorders and tinnitus as a common debilitating symptom that can be associated with these disorders.


Assuntos
Encefalopatias/radioterapia , Terapia com Luz de Baixa Intensidade , Doença de Alzheimer/radioterapia , Animais , Lesões Encefálicas Traumáticas/radioterapia , Modelos Animais de Doenças , Humanos , Doença de Parkinson/radioterapia , Ensaios Clínicos Controlados Aleatórios como Assunto
10.
Neurosci Lett ; 746: 135652, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33482310

RESUMO

Methamphetamine (METH) may cause long‒lasting neurotoxic effects and cognitive impairment. On the other hand, the ovarian hormones estrogen and progesterone have neuroprotective effects. In the current study, we aimed to examine the effects of estrogen and progesterone on anxiety‒like behavior and neuronal damage in METH‒exposed ovariectomized (OVX) rats. Three weeks after ovariectomy, the animals received estrogen (1 mg/kg, i.p.), or progesterone (8 mg/kg, i.p.), or estrogen plus progesterone (with the same doses), or vehicle during 7 consecutive days (days 22-28). On day 28, OVX rats were exposed to a single‒day METH regimen (6 mg/kg, four s.c. Injections, with 2 h interval) 30 min after the hormone treatment. The next day (on day 29), the animals were assessed for anxiety‒related behaviors using the open field and elevated plus‒maze tasks. The animals were then sacrificed and brain water content, cell apoptosis and expression of IL-1ß were evaluated. The findings showed that treatment with estrogen or progesterone alone in METH‒exposed rats significantly improved hyperthermia, anxiety‒like behavior, neuronal damage, and inflammation in the CA1 area. Also, treatment with estrogen plus progesterone improved hyperthermia and brain edema. Taken together, the findings suggest that treatment with ovarian hormones can partially prevent hyperthermia and anxiety‒related behaviors induced by METH in OVX rats, which could be accompanied by their neuroprotective effects in the hippocampus.


Assuntos
Ansiedade/metabolismo , Encéfalo/metabolismo , Estrogênios/uso terapêutico , Metanfetamina/toxicidade , Ovariectomia/efeitos adversos , Progesterona/uso terapêutico , Animais , Ansiedade/induzido quimicamente , Ansiedade/prevenção & controle , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Estimulantes do Sistema Nervoso Central/toxicidade , Estrogênios/farmacologia , Feminino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Ovário/metabolismo , Progesterona/farmacologia , Ratos , Ratos Wistar
11.
Med J Islam Repub Iran ; 35: 138, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35321380

RESUMO

Background: Lamotrigine (LTG) is an antiepileptic drug used in the treatment of seizures, mood disorders, and cognitive problems. The cardiac effects of LTG, such as LTG toxicity and SUEDP, have been studied. This is an in vitro study examining the effect of LTG on isolated atria of guinea pigs. Methods: The atria of 21 male Guinea pigs were isolated and stabilized in Krebs-solution and physiologic condition. The rhythm of contraction, contractile force, and heart rate were recorded. In 7 atria, LTG at the doses of 2, 4, 8, and 16 mg/mL were added and the contractile forces and heart rates were recorded and compared together. In the next step, in 14 atria, 8 were pretreated with LTG, and 6 without pretreatment were exposed to ouabain, and the times of the onset of effect, arrhythmia, and asystole were recorded. The statistical comparisons were made by using Student's t test and repeated measure analysis of variance followed by the Bonferroni method. Results: Lamotrigine (4, 8, and 16 mg/mL) significantly decreased the heart rate and contractile force of the isolated guinea pigs' atria (P <.001). Pretreatment with LTG significantly increased the mean time of onset of the effect of ouabain, the onset of ouabain-induced arrhythmia, and time of ouabain-induced asystole (P <.001). Conclusion: LTG reduces the heart rate and contractile force, and also inhibit ouabain induced-arrhythmia of the isolated atria of guinea pigs.

12.
Electromagn Biol Med ; 38(3): 198-209, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31179753

RESUMO

Glioblastoma multiforme (GBM) is a highly malignant brain tumor with an extremely dismal prognosis, a median survival is12 months. Temozolomide (TMZ) is an alkylating agent widely used to treat cancer, resistance to this drug is often found. One unexplored possibility for overcoming this resistance is a treatment based on concomitant exposure to electromagnetic fields (EMF) and TMZ. Indeed, many evidences show that EMF affects cancer cells and drug performance. Therefore, the present study was carried out to evaluate the potential synergistic effect of 100 µM TMZ and EMF (100 Hz, 100 G) on human glioma cell line U87 U87 cells with four experimental groups (I-IV) were exposed to ELF-EMF and TMZ for 120 and 144 h, as follows: (I) control; (II) ELF-EMF; (III) TMZ; (IV) ELF-PEMFs / TMZ. mRNA expression of genes such as (Nestin,CD133, Notch4 and GFAP) were investigated by Real-time PCR and western blot. We also evaluated, SOD activity, MDA and calcium concentration by ELISA assay. Co-treatment synergistically decreased the expression of Nestin,CD133, and Notch4 and increased the GFAP genes. We also observed an increase in Superoxide dismutase (SOD) activity, Malondialdehyde (MDA) and Ca2+concentration in comparison to controls.TMZ prevents cancer progression not only through the induction of cell death, but also by inducing differentiation in cancer cells. In addition, our data demonstrate ELF-EMF (100 Hz, 100 G) can significantly enhance the effects of TMZ on human glioblastoma U87 cell. These findings may open new window for future studies.


Assuntos
Antineoplásicos/farmacologia , Campos Eletromagnéticos , Glioblastoma/patologia , Temozolomida/farmacologia , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Cálcio/metabolismo , Carcinogênese/efeitos dos fármacos , Carcinogênese/efeitos da radiação , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Resistencia a Medicamentos Antineoplásicos/efeitos da radiação , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos da radiação , Superóxido Dismutase/metabolismo , Temozolomida/administração & dosagem
13.
Basic Clin Neurosci ; 9(1): 51-58, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29942440

RESUMO

INTRODUCTION: The life quality of patients with epileptic seizures is highly affected by cognitive deficits. Low Frequency Stimulation (LFS) is a novel approach for the treatment of pharmacoresistant epilepsy. The main goal of this research is investigating the possible effect of LFS on seizure-induced cognitive dysfunction. METHODS: To this end, the kindled animal were prepared via CA1 electrical stimulation in a semi-rapid way (12 stimulations/day). A group of animals were stimulated with LFS, 4 times at 30 s, 6 h, 24 h, and 30 h after the last kindling stimulation. Applied LFS was administered in 4 packages every 5 minutes. The packages were designed with 200 monophasic 200 monophasic square wave pulses of 0.1 ms duration at 1 Hz. The passive-avoidance test was conducted on all animals in order to measure the learning and memory behavior. RESULTS: Hippocampal kindled rats showed deficits in learning and memory when passive avoidance test was performed. Application of LFS reversed the impairment in learning and memory behavior in kindled rats. At the same time, LFS markedly diminished kindling-induced neuronal loss and atrophy in the hippocampus. CONCLUSION: LFS may have some protection against seizure-induced cognitive damage in kindled rats.

14.
Electromagn Biol Med ; 37(3): 138-145, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29846098

RESUMO

Glioblastoma multiforme (GBM) is a malignant brain cancer that causes high mortality in patients. GBM responds weakly to the common cancer treatments such as chemotherapy and radiotherapy and even surgery. Carboplatin is an alkylating agent widely used to treat cancer. However, resistance to this drug is a common problem in its use in cancer treatment. Concomitant exposure to extremely low-frequency electromagnetic fields (ELF-EMFs) and carboplatin is one unexplored possibility for overcoming this resistance. Indeed, many lines of evidence show that EMF affects cancer cells and drug action. In this study, we evaluated the effect of concomitant administration of carboplatin and EMF (50 Hz, 70 G) and also concomitant administration of carboplatin and static magnetic field (SMF) (70 G) on human glioma cell line (U-87). The results showed that cotreatment reduced the efficiency of carboplatin in U-87 cells, by decreasing caspase-3 in comparison to drug groups. Overall, EMF reduced the apoptotic effect of carboplatin, possibly through a redox regulation mechanism. Therefore, we have to avoid coadministration of magnetic field (MF) and carboplatin in tumor area, because the MF decreased the toxicity of the drug. However, further studies are needed to reveal the action mechanism of this combination therapeutic method.


Assuntos
Antineoplásicos/farmacologia , Carboplatina/farmacologia , Campos Eletromagnéticos , Glioblastoma/patologia , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos
16.
Int J Neurosci ; 128(8): 691-696, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29185809

RESUMO

INTRODUCTION: Although studies have shown a potential association between extremely low frequency electromagnetic fields (ELF-EMFs) exposure and Alzheimer's disease (AD), few studies have been conducted to investigate the effects of weak magnetic fields on brain functions such as cognitive functions in animal models. Therefore, this study aimed to investigate the effect of ELF-EMF exposure (50 Hz, 10 mT) on spatial learning and memory changes in AD rats. METHODS: Amyloid-ß (Aß) 1-42 was injected into lateral ventricle to establish an AD rat model. The rats were divided into six groups: Group I (control); Group II (surgical sham); Group III (AD) Alzheimer's rat model; Group IV (MF) rats exposed to ELF-MF for 14 consecutive days; Group V (Aß injection+M) rats exposed to magnetic field for 14 consecutive days from day 0 to 14 days after the Aß peptide injection; Group VI (AD+M) rats exposed to magnetic field for 14 consecutive days after 2 weeks of Aß peptide injection from 14th to 28th day . Morris water maze investigations were performed. RESULTS: AD rats showed a significant impairment in learning and memory compared to control rats. The results showed that ELF-MF improved the learning and memory impairments in Aß injection+M and AD+M groups. CONCLUSION: Our results showed that application of ELF-MF not only has improving effect on different cognitive disorder signs of AD animals, but also disrupts the processes of AD rat model formation.


Assuntos
Doença de Alzheimer/complicações , Magnetoterapia/métodos , Transtornos da Memória/etiologia , Transtornos da Memória/terapia , Recuperação de Função Fisiológica/efeitos da radiação , Peptídeos beta-Amiloides/toxicidade , Análise de Variância , Animais , Modelos Animais de Doenças , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos da radiação , Fragmentos de Peptídeos/toxicidade , Ratos , Ratos Wistar , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/efeitos da radiação , Natação , Fatores de Tempo , Resultado do Tratamento
17.
Biomed Pharmacother ; 92: 254-264, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28551545

RESUMO

Glioblastoma multiforme (GBM) is the most malignant brain cancer that causes high mortality in humans. It responds poorly to the most common cancer treatments, such as surgery, chemo- and radiation therapy. Temozolomide (TMZ) is an alkylating agent that has been widely used to treat GBM; resistance to this drug is often found. One unexplored possibility for overcoming this resistance is a treatment based on concomitant exposure to electromagnetic fields (EMF) and TMZ. Indeed, many evidences show that EMF affects cancer cells and drug performance. In this study, we evaluated the potential synergistic effect of 100µM TMZ and EMF (100Hz, 100G) on two human glioma cells line, i.e., U87 and T98G above single treatments, TMZ or EMF. Co-treatment synergistically enhanced apoptosis in U87 and T98G cells, by increasing the expression of P53, Bax, and Caspase-3 and decreasing that of Bcl-2 and Cyclin-D1. We also observed an increase in reactive oxygen species (ROS) production and the overexpression of the heme oxygenase-1 (HO-1) gene in comparison to controls. In conclusion, since EMF enhanced the apoptotic effect of TMZ, possibly through a redox regulation mechanism, the TMZ/EMF combination may be effective for glioma cancer treating. Further studies are needed to reveal the action mechanism of this possible novel therapeutic approach.


Assuntos
Antineoplásicos Alquilantes/toxicidade , Citotoxinas/toxicidade , Dacarbazina/análogos & derivados , Campos Eletromagnéticos/efeitos adversos , Glioblastoma/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Dacarbazina/toxicidade , Glioblastoma/patologia , Humanos , Magnetoterapia/métodos , Temozolomida
18.
Electromagn Biol Med ; 36(3): 238-247, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27874284

RESUMO

The impact of extremely low-frequency pulsed electromagnetic fields (ELF-PEMFs) at various frequencies and amplitudes was investigated on cell cycle, apoptosis and viability of the Glioblastoma Multiforme (GBM) cell line (U87), in vitro. The GBM is a malignant brain tumor with high mortality in humans and poorly responsive to the most common type of cancer treatments, such as surgery, chemotherapy and radiation therapy. U87 cells with five experimental groups (I-V) were exposed to various ELF-PEMFs for 2, 4 and 24 h, as follows: (I) no exposure, control; (II) 50 Hz 100 ± 15 G; (III) 100 Hz 100 ± 15 G; (IV) 10 Hz 50 ± 10 G; (V) 50 Hz 50 ± 10 G. The morphology properties, cell viability and gene expression of proteins involved in cell cycle regulation (Cyclin-D1 and P53) and apoptosis (Caspase-3) were investigated. After 24 h, the cell viability and Cyclin-D1 expression increased in Group II (30%, 45%), whereas they decreased in Groups III (29%, 31%) and IV (21%, 34%); P53 and Caspase-3 elevated only in Group III; and no significant difference was observed in Group V, respectively, compared with the control (p < 0.05). The data suggest that the proliferation and apoptosis of human GBM are influenced by exposure to ELF-PEMFs in different time-dependent frequencies and amplitudes. The fact that some of the ELF-PEMFs frequencies and amplitudes favor U87 cells proliferation indicates precaution for the use of medical devices related to the MFs on cancer patients. On the other hand, some other ELF-PEMFs frequencies and intensities arresting U87 cells growth could open the way to develop novel therapeutic approaches.


Assuntos
Campos Eletromagnéticos , Glioblastoma , Apoptose , Caspase 3/metabolismo , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Ciclina D1/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...